
分子図(ブタジエン)

$$\varphi_1 = 0.372\chi_1 + 0.602\chi_2 + 0.602\chi_3 + 0.372\chi_4$$

$$\varphi_2 = 0.602\chi_1 + 0.372\chi_2 - 0.372\chi_3 - 0.602\chi_4$$

$$\varphi_3 = 0.602\chi_1 - 0.372\chi_2 - 0.372\chi_3 + 0.602\chi_4$$

$$\varphi_4 = 0.372\chi_1 - 0.602\chi_2 + 0.602\chi_3 - 0.372\chi_4$$

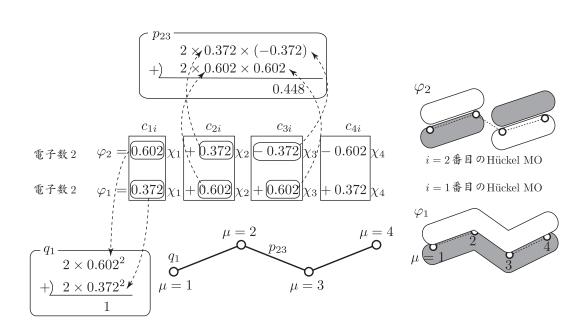


図 1: ブタジエンの π 電子密度と π 結合次数の計算方法

$$\pi$$
 電子密度 $q_{\mu} := \sum_{i}^{\mathrm{OCC}} n_{i} c_{\mu i}^{2}$

全結合次数
$$P_{\mu\nu}=1+p_{\mu\nu}$$

$$p_{\mu\nu}:=\sum_{i}^{\mathrm{OCC}}n_{i}c_{\mu i}c_{\nu i}$$

自由原子価 $F_{\mu}:=4.732-N_{\mu}$ N_{μ} は μ 原子の周りの全結合次数の和

ホルムアルデヒド $(\alpha - E)c_{\mu} + \sum_{\nu(\nu \to \mu)} \beta c_{\nu} = 0$

LCAO

$$\varphi = c_1 \chi_1 + c_2 \chi_2^{\mathcal{O}}$$

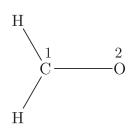


図 2: ホルムアルデヒドの骨格構造

係数を決める方程式 (ただし, β で割る前の形で):

$$\beta_{\text{CO}} := \int \chi_1 \chi_2^{\text{O}} dv$$
 $\alpha_{\text{O}} := \int \chi_2^{\text{O}} \hat{h} \chi_2^{\text{O}} dv$

 β , α の評価:

$$\beta_{\rm CX} = k_{\rm CX}\beta$$
 $\alpha_{\rm X} = \alpha + k_{\rm X}\beta$ $\beta_{\rm CO} =$ $\alpha_{\rm O} =$

係数を決める方程式 (ただし, β で割る前の形で):

$$\left. \begin{array}{c} = & 0 \\ \\ \hline & \\ \end{array}
ight.$$
 $\left. \begin{array}{c} = & 0 \\ \\ \hline \end{array} \right.$ $\left. \begin{array}{c} = & 0 \\ \\ \end{array} \right.$ $\left. \begin{array}{c} = & 0 \\ \\ \end{array} \right.$ $\left. \begin{array}{c} = & 0 \\ \end{array} \right.$

表 1: ヘテロ原子に対するパラメータ:原子の上につけた・は π 電子系に供した電子数を表す。

原子	$k_{\rm CX}$	$k_{ m X}$	代表的な化合物	
N	$k_{\dot{\rm CN}}=1$	$k_{\dot{\mathrm{N}}} = 0.5$	ピリジン	
	$k_{\rm C\ddot{N}}=0.8$	$k_{\rm \ddot{N}}=1.5$	アニリン	
	$k_{\rm CN^+}=1$	$k_{\mathrm{N}^+}=2$	ピリジニウムイオン	
О	$k_{\text{CO}} = 1$	$k_{\bullet} = 1$	ケトン	
	$k_{\rm C\ddot{O}}=0.8$	$k_{\ddot{\mathrm{O}}} = 2$	フェノール	
F	$k_{\rm CF} = 0.7$	$k_{\rm F} = 3$	フルオロベンゼン	
Cl	$k_{\rm CCl} = 0.4$	$k_{\rm Cl} = 2$	クロロベンゼン	
Br	$k_{\rm CBr} = 0.3$	$k_{\rm Br} = 1.5$	ブロモベンゼン	

永年方程式とその解:

展開すると
$$\lambda^2 - \lambda - 1 = 0 \qquad \frac{\text{これよりただちに}}{2} \qquad \lambda = \frac{1 \pm \sqrt{5}}{2} = 1.618, -0.618$$

係数の計算(省略)と結果:

$$\lambda = 1.618 \longrightarrow c_1 = 0.526 \quad c_2 = 0.851$$

$$\lambda = -0.618 \longrightarrow c_1 = 0.851 \quad c_2 = -0.526$$

エネルギー準位と波動関数:

π 電子密度 , 結合次数 :

$$q_{\rm C} =$$

$$q_{\rm O} =$$

$$p_{\rm CO} =$$

$$P_{\rm CO} =$$

$$F_{\rm C} =$$

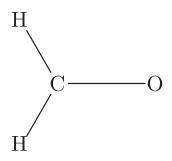
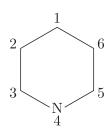



図 3: ホルムアルデヒドの分子図

ピリジン
$$(\alpha - E)c_{\mu} + \sum_{\nu(\nu \to \mu)} \beta c_{\nu} = 0$$

$$\varphi = c_1 \chi_1 + c_2 \chi_2 + c_3 \chi_3 + c_4 \chi_4^{\text{N}} + c_5 \chi_5 + c_6 \chi_6$$

図 4: ピリジンの構造

係数を決める方程式 (ただし , β で割る前の形):

$$(\alpha - E)c_1 + \beta c_2$$

$+\beta c_6 = 0$

β , α の評価:

$$\beta_{\rm CN} =$$

$$\alpha^{\rm N} =$$

式の整理

$$-\lambda c_1$$

$$+ c_2$$

永年方程式とその解:

展開すると、
$$\lambda^6 - 0.5\lambda^5 - 6\lambda^4 + 2\lambda^3 + 9\lambda^2 - 1.5\lambda - 4 = 0$$
(因数分解すると、 $(\lambda+1)(\lambda-1)(\lambda^4 - 0.5\lambda^3 - 5\lambda^2 + 1.5\lambda + 4) = 0$
(数値的に解くと、 $\lambda = 2.107, \ 1.167, \ 1, \ -0.841, \ -1, \ -1.934$

表 2: ピリジン πΜΟ の係数

λ	c_1	c_2	c_3	c_4	c_5	c_6
2.107	0.343	0.361	0.419	0.521	0.419	0.361
1.167	-0.598	-0.349	0.191	0.571	0.191	-0.349
1.000	0.000	0.500	0.500	0.000	-0.500	-0.500
-0.841	0.566	-0.238	-0.366	0.546	-0.366	-0.238
-1.000	0.000	-0.500	0.500	0.000	-0.500	0.500
-1.934	-0.452	0.437	-0.393	0.323	-0.393	0.437

π 電子密度 , 結合次数 :

 $q_{\rm C_1} =$

 $q_{\rm C_2} =$

 $q_{\mathrm{C}_3} =$

 $q_{\rm N} =$

 $P_{C_1C_2} = 1 + p_{C_1C_2} =$

 $P_{\rm C_2C_3} = 1 + p_{\rm C_2C_3} =$

 $P_{\rm C_3N} = 1 + p_{\rm C_3N} =$

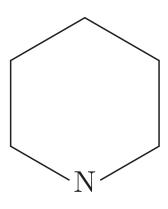


図 5: ピリジンの分子図

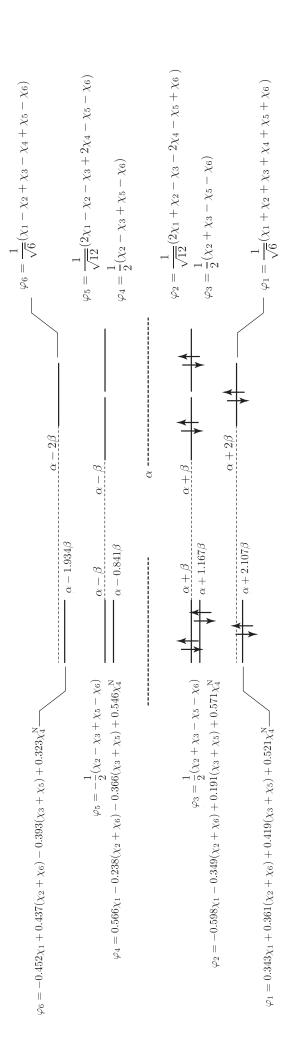


図 6: ピリジンとベンゼンのエネルギー準位の比較